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15 Background: Self-reported information may not accurately cap-
16 ture smoking exposure. We aimed to evaluate whether smoking-
17 associated DNA methylation markers improve urothelial cell
18 carcinoma (UCC) risk prediction.
19 Methods: Conditional logistic regression was used to assess
20 associations between blood-based methylation and UCC risk using
21 two matched case–control samples: 404 pairs from the Melbourne
22 Collaborative Cohort Study (MCCS) and 440 pairs from the
23 Women’s Health Initiative (WHI) cohort, respectively. Results were
24 pooled using fixed-effects meta-analysis. We developed methyla-
25 tion-based predictors of UCC and evaluated their prediction accu-
26 racy on two replication data sets using the area under the curve
27 (AUC).
28 Results: The meta-analysis identified associations (P < 4.7 �
29 10–5) for 29 of 1,061 smoking-associated methylation sites,
30 but these were substantially attenuated after adjustment
31 for self-reported smoking. Nominally significant associations

32 (P < 0.05) were found for 387 (36%) and 86 (8%) of smoking-
33 associated markers without/with adjustment for self-reported
34 smoking, respectively, with same direction of association as with
35 smoking for 387 (100%) and 79 (92%) markers. A Lasso-based
36 predictor was associated with UCC risk in one replication data set
37 in MCCS [N¼ 134; odds ratio per SD (OR)¼ 1.37; 95% CI, 1.00–
38 1.90) after confounder adjustment; AUC ¼ 0.66, compared with
39 AUC ¼ 0.64 without methylation information. Limited evidence
40 of replication was found in the second testing data set in WHI (N
41 ¼ 440; OR ¼ 1.09; 95% CI, 0.91–1.30).
42 Conclusions: Combination of smoking-associated methylation
43 marksmay provide some improvement toUCC risk prediction.Our
44 findings need further evaluation using larger data sets.
45 Impact: DNA methylation may be associated with UCC risk
46 beyond traditional smoking assessment and could contribute to
47 some improvements in stratification of UCC risk in the general
48 population.

49 Introduction
50 Urothelial cell carcinoma (UCC) is a type of malignancy arising
51 from the urothelium. Although UCC accounts for more than 90% of

53urinary bladder cancers (1), some can also be found in the proximal
54urethra, the transitional epithelium of the renal pelvis, and the
55ureter (2). According to Global Cancer Statistics, bladder cancer was
56in 2020 the 12th most common cancer worldwide, with an estimated
57573,000 new cases and 212,000 new deaths (3). Cigarette smoking has
58been established as a strong risk factor for UCC with approximately
59half of newly diagnosed patients reporting a history of smoking (4, 5).
60Many studies (6–9) have investigated the association between smoking
61and risk of UCC, and a meta-analysis of 89 observational studies
62reported an increased risk of bladder cancer for current smokers [odds
63ratio (OR)¼ 3.1; 95% confidence interval (CI)¼ 2.5–3.7] and former
64smokers (OR ¼ 1.8; 95% CI, 1.5–2.1), compared with never smo-
65kers (10). However, information on smoking history used in most
66epidemiologic studies, such as smoking status (never, former, or
67current smoker) or pack-years, is typically collected via self-report
68and may be prone to substantial measurement error. The accuracy of
69self-reported information has also been questioned because of declin-
70ing response rates and the increasing social stigmatization of smok-
71ing (11). Furthermore, such information cannot reflect secondhand
72smoke exposure during childhood or adulthood. Therefore, such less
73accurate informationwould have potential impact on studies of disease
74association and risk prediction.
75Serumorurinary cotinine (12) andbloodDNAmethylation (13–16)
76have been established as valid biomarkers of cigarette smoking expo-
77sure. Although cotinine and methylation markers showed similar
78accuracy in distinguishing current from never smokers, only methyl-
79ation markers can distinguish former from never smokers with high
80accuracy (17). Therefore, DNA methylation markers measured in
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83 blood, which may also reflect different individuals’ responses
84 to lifetime exposure, can be used to augment self-reported smoking
85 data to help refine individual risk profiling of smoking-induced
86 diseases (18–20).
87 Authors of several studies (21–23) have evaluated the association of
88 genome-wide cytosine-guanine (CpG) methylation in blood DNA
89 with risk of UCC. Jordahl and colleagues (23), for example, identified
90 potential methylation-based markers of susceptibility to urothelial
91 carcinoma of the bladder, using the Illumina Infinium HumanMethy-
92 lation450 Bead Array (�450,000 probes) on prediagnostic blood
93 collected in the Women’s Health Initiative (WHI). They subsequently
94 found that two previously identified smoking-associated CpG sites
95 mediated the effect of smoking on bladder cancer risk (24). With the
96 current study, we aimed to expand on previous research by identifying
97 associations between smoking-associated DNAmethylation and blad-
98 der cancer risk and by developing a predictor of UCC risk using
99 smoking-associated DNA methylation measures.

100 Materials and Methods
101 Study participants
102 The Melbourne Collaborative Cohort Study (MCCS) is an Aus-
103 tralian prospective cohort study of 41,513 people recruited between
104 1990 and 1994 in the Melbourne metropolitan area. All participants
105 were of white European origin. DNA was extracted from prediag-
106 nostic peripheral blood taken at recruitment (1990–1994) or at a
107 subsequent follow-up visit (2003–2007) in participants free of UCC.
108 More details about the cohort, blood collection, DNA extraction,
109 and cancer ascertainment can be found elsewhere (22, 25). Infor-
110 mation on tobacco use was self-reported by participants using
111 questionnaires (24, 25). In this study, we utilized a case–control
112 data set of urothelial cancer nested within the MCCS. Controls were
113 matched to incident cases on age at blood draw, year of birth, sex,
114 country of birth (Australia/New Zealand/UK/other, Italy, or
115 Greece), sample collection period (baseline at recruitment or the
116 follow-up visit), and sample type (peripheral blood mononuclear
117 cells, dried blood spots, or buffy coats) using incidence density
118 sampling. To minimize batch effects, samples from each matched
119 case–control pair were plated to adjacent wells on the same Bead-
120 Chip, with plate, chip, and position assigned randomly. We exclud-
121 ed from the analysis sex-discrepant and failed samples for DNA
122 methylation measures. Case–control pairs with any missing values
123 for the confounders measured were also excluded. Overall, 404
124 case–control pairs were included in the present study.
125 For replication and meta-analysis, we included the study sample
126 previously used by Jordahl and colleagues (23, 24), which comprises
127 440 cases diagnosed with urothelial carcinoma of the bladder
128 and 440 cancer-free controls matched on year of enrollment, age
129 at enrollment (�2 years), follow-up time greater than or equal to
130 their matched case, trial component and DNA extraction method
131 (5-Prime, phenol, Bioserve, or PurGene). This case–control study
132 was nested within the WHI, which includes 161,808 postmeno-
133 pausal women recruited from 1993 to 1998 across the United
134 States (26).
135 The study was approved by the Cancer Council Victoria’s
136 Human Research Ethics Committee, Melbourne, VIC, Australia,
137 and the Institutional Review Board and Publications and Presenta-
138 tions Committee of WHI–Clinical Coordinating Center in the Fred
139 Hutchinson Cancer Research Center, Seattle, Washington. All
140 participants provided informed consent in accordance with the
141 Declaration of Helsinki.

143Quality control and normalization of methylation data
144Quality control (QC) details for measures of genome-wide DNA
145methylation in the MCCS have been reported previously (22).
146Briefly, we removed probes with missing rate > 20% and probes
147on Y-chromosome, and ultimately retained 484,966 CpG sites
148with their beta values for each sample. Methylation M-values,
149calculated as log2[beta/(1-beta)], were used for analysis as these
150are thought to be more statistically valid for detection of differential
151methylation (27). In the replication data of WHI, similar data
152processing on DNA methylation was performed, e.g., QC on CpGs
153sites using probe missing rate (> 10%) and beadcount (<3) in at
154least 10% of samples, and M-value transformation, as described
155previously (23, 24).

156Association analysis of genome-wide DNA methylation
157An epigenome-wide association study (EWAS) based on the 404
158case–control pairs in MCCS was conducted, using conditional
159logistic regression to estimate OR and 95% CI of UCC risk per
160SD at each of the 484,966 CpG sites. A first model (model 1) was
161adjusted for white blood cell composition (percentage of CD4þ T
162cells, CD8þ T cells, B cells, NK cells, monocytes, and granulocytes,
163estimated using the Houseman algorithm; ref. 28), and a second
164model (model 2) was additionally adjusted for smoking status
165(current/former/never) and pack-years (log-transformed). As a
166sensitivity analysis, we evaluated a third model (model 3) with
167additional adjustment for alcohol consumed in the previous week
168(in grams/day), body mass index (in kg/m2), height (in meters),
169educational level (pseudo-continuous score ranging from 1 for
170“primary school only” to 8 for “tertiary or higher university
171degree”), physical activity (categorized score based on time spent
172doing vigorous/less vigorous activities), socioeconomic status (dec-
173iles of the relative socioeconomic disadvantage of area of residence
174index), and diet quality (Alternative Healthy Eating Index 2010).
175We also stratified analyses by sex and clinical subtype (muscle
176invasive or non–muscle invasive) and tested heterogeneity of the
177associations using the likelihood ratio test, by comparing models
178with and without interaction terms for these variables. The Bon-
179ferroni correction was applied to account for multiple comparisons
180(P < 0.05/484,966 ¼ 1.03 � 10–7).

181Association analysis of smoking-associated DNA methylation
182Among the 484,966 probes, we focused on 1,061 sites that were
183found to be strongly associated with a comprehensive smoking index
184in the MCCS (P < 10–7) and also reported to be associated with
185smoking at this threshold P < 10–7 in any of six large studies, as
186described in our previous publication (see Supplementary Table S1;
187ref. 29). For the replication study, we also used conditional logistic
188regression (models 1 and 2) to estimate associations of the 1,061
189smoking-associated DNA methylation measures with risk of UCC in
190the WHI. For the WHI study, models 1 and 2 were additionally
191adjusted for race/ethnicity (Asian/Pacific Islander, Black/African
192American, Hispanic/Latino, non-Hispanic white, or other). The
193Bonferroni correction was applied to account for multiple compar-
194isons (P < 0.05/1,061 ¼ 4.7 � 10–5).

195Meta-analysis of MCCS and WHI studies
196A fixed-effects meta-analysis with inverse-variance weights was
197conducted to combine associations with UCC risk at the 1,061
198smoking-associated CpGs from the analyses of MCCS and WHI,
199using the metagen function in the R package meta (30). The I-
200square statistic was used to assess heterogeneity across the two studies.
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203 Predictive models
204 A predictor of UCC risk was developed using the data of 270 case–
205 control pairs from the MCCS cohort for which blood was collected at
206 baseline (1990–1994) as the training set (discovery phase), and 134
207 case–control pairs for which blood was drawn at follow-up (2003–
208 2007) as an independent testing set in the testing phase. We used
209 penalized logistic regressionmodels withUCC risk as the outcome and
210 the M-values at the 1,061 smoking-associated CpGs as the indepen-
211 dent variables, applied to the training set using the R package
212 glmnet (31). Five-fold cross-validation was used, and the mixing
213 parameter (alpha)was set to 1 to apply a Lasso (least absolute shrinkage
214 and selection operator) penalty. The covariates used in model 3 were
215 forced in the penalized logistic models. Coefficients of the logistic
216 Lasso model with the lambda value corresponding to the minimum
217 mean cross-validated error were extracted and used as weights of the
218 selected CpGs to construct a smokingmethylation score (MS) for each
219 participant. The smokingMSwas then evaluated as a predictor ofUCC
220 risk in conditional logistic regression models (adjusted for covariates
221 in model 3 for MCCS data and in model 2 for WHI data, respectively)
222 in the testing sets.
223 Alternative ways to build methylation-based predictors of UCC
224 risk were explored. We conducted univariate analyses using con-
225 ditional logistic regression models to the training set to estimate
226 ORs for the individual associations between DNA methylation and
227 UCC risk at each of the 1,061 CpGs. The same covariates as those
228 forced in the Lasso models were included as covariates. We con-
229 sidered three P-value cutoffs (0.05, 0.01, and 0.001) of individual
230 associations at the 1,061 sites, and for each of them we calculated a
231 smoking MS as a weighted average using as weights the logarithm of
232 the OR for each selected CpG.

234As a sensitivity analysis, we also used the logistic Lasso method (as
235described above) to develop a DNA methylation-based smoking
236predictor of UCC risk using all 404 MCCS case–control pairs. The
237external 440 case–control pairs from theWHI study were then used as
238an independent testing set to assess the proposed DNA methylation-
239based smoking predictors by using conditional logistic regression
240models (adjusted for covariates in model 2).
241The accuracy of the predictivemodels with the smokingMS as UCC
242risk predictor was assessed using area under the receiver operating
243characteristic curve (AUC) estimates with unconditional logistic
244regression models (models A, B, and C), using the R package
245pROC (32). Model A used white blood cell composition as indepen-
246dent variables. Model B used white blood cell composition, smoking
247status, and pack-years (log-transformed) as independent variables.
248Race/ethnicity was also included in the two models for the WHI
249sample. Model C used white blood cell composition, smoking status,
250pack-years, and other covariates (age, sex, country of birth, sample
251type, alcohol, BMI, height, educational level, physical activity, socio-
252economic status, and diet quality) as independent variables. The
253proposed MSs were then used as additional independent variables in
254themodels to assess the prediction performance by AUC. TheDeLong
255test (33) was used for comparing AUCs.
256All methylation scores were rescaled to Z-scores for better com-
257parability of their association with UCC risk. The flowchart of the
258statistical analysis pipelines and method details are shown in Fig. 1.

259Results
260The distribution of sociodemographic, lifestyle, anthropometric,
261and clinical characteristics of the participants in theMCCS is presented

Melbourne Collaborative Cohort Study
404 matched case−control pairs 

(urothelial cancer)

Training set: 270 case−control pairs
(blood collected in 1990−1994)

Methylation scores (MS) using weighted average 
of methylation at selected CpGs: 
MS = b1CpG1 + b2CpG2 + … + bnCpGn,

CpGi is the methylation M-value at this CpG site, 
bi uses LASSO coefficients or log of OR from 
univariate analysis. 

Method 1: Lasso regression identified 10 CpGs
Method 2: Used univariate analysis to identify 66 
CpGs with P < 0.05, 11 CpGs with P < 0.01, and 2 
CpGs with P < 0.001

Testing set: 134 case-control pairs
(blood collected in 2003−2007)

Individual association analysis
(484,966 CpG sites)

1,061 smoking-associated CpGs

Women’s Health Initiative
440 matched case−control pairs 

(bladder cancer)

META-ANALYSIS
MCCS and WHI for 

the 1,061 CpGs

Replication in MCCS
- Test association with UCC risk 

for MS10, MS66, MS11 and MS2 
(see Table 4), 

- Evaluate prediction by AUC for 
MS10 and MS11 (see Table 5).

Replication in WHI:
- Test association with UCC risk for 

MS10 and MS18 (see Table 4)  
- Evaluate prediction by AUC (see 

Table 5) for MS10 and MS18.

Note: MS18 was generated by Method 
1 but using all 404 MCCS pairs as a 
training set.

1,061 smoking-associated CpGs

Figure 1.

Flowchart of the study.Q5 Description of the data and methods used for the analysis
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264 in Table 1. Controls were matched to cases on age at blood draw, sex,
265 country of birth (Australia/New Zealand/UK/other, Italy, or Greece)
266 and sample type (peripheral blood mononuclear cells, dried blood
267 spots, and buffy coats). The participants in the MCCS testing set were
268 an average eight years older than in the training set. Compared with
269 controls, cases were more frequently past and current smokers, and
270 had greater smoking pack-years.
271 For the genome-wide probes tested on the 404 MCCS case–
272 control pairs using models 1–3, there was no significant association
273 between DNA methylation and risk of UCC after Bonferroni
274 correction (P < 1.03 � 10–7). Nominally significant associations
275 (P < 0.05) were observed for 40,664 (�8%), 32,137 (�7%), and
276 31,319 (�6%) of the 484,966 CpGs using models 1–3, respectively.
277 Focusing on the 1,061 smoking-associated CpG sites that we
278 previously identified (29), there was no significant association between
279 DNA methylation and UCC risk in the MCCS after Bonferroni
280 correction (P < 4.7� 10–5). Comparing to genome-wide results, there
281 were more methylation markers associated with risk of UCC for the
282 smoking-associated loci, e.g., 19 of the 25 CpGs most strongly with
283 smoking hadP< 0.05 inmodel 1 (Supplementary Table S1).Nominally
284 significant associations (P < 0.05) were observed for 206 (�19%) and
285 93 (�9%) of the 1,061 CpGs in models 1 and 2, respectively (Sup-
286 plementary Table S1), and the direction of the associationwas the same
287 as for smoking for 205/206 (100%) and 88/93 (95%) CpG sites.
288 Adjustment for a more comprehensive set of variables (model 3) did
289 not substantially change the associations (Table 2 and Supplementary
290 Fig. S1). Furthermore, the direction of association at 883 (83%, 662
291 negative and 221 positive, model 1) and 766 (72%, 586 negative and
292 180 positive, model 2) of the 1,061 CpGs was the same as for their

294association with smoking (Supplementary Table S1). The results for
295the 20 most significant associations are presented in Table 2; for all of
296these associations, the direction of association was the same as with
297smoking. The stratified results by UCC subtype and sex are shown in
298Supplementary Tables S2 and S3; we observed no evidence of signif-
299icantUCC subtype or sex heterogeneity after Bonferroni correction for
300multiple testing (P < 4.7 � 10–5).
301The replication study using WHI data identified nominally signif-
302icant associations (P < 0.05) for 229 (�22%) and 47 (�4%) of the 1,061
303smoking-based CpGs in models 1 and 2, respectively (Supplementary
304Tables S4 and S5). Among these associations, 51 CpGs (model 1) and 3
305CpGs (model 2) were also nominally significant and in the same
306direction as in the MCCS data.
307The meta-analysis of MCCS and WHI results identified nomi-
308nally significant associations for 387 (�36%) and 86 (�8%) CpG
309sites in models 1 and 2, respectively (Supplementary Tables S4 and
310S5), and the direction of the association was the same as the
311association with smoking for 387/387 (100%) and 79/86 (92%) of
312the CpGs. There were 29 significant associations in model 1 after
313Bonferroni correction (P < 4.7 � 10–5), and among these associa-
314tions, 9 CpGs overlapping the AHRR, GPR15, F2RL3, PRSS23, and
315GFI1 genes were genome-wide significant (P < 1.03 � 10–7). The
316associations were nevertheless substantially attenuated (all P > 4.7�
31710–5) after adjusting for self-reported smoking variables (model 2).
318For the majority of the 1,061 CpGs, there was little heterogeneity
319between MCCS and WHI results (81% and 83% of the CpGs had I2

320< 0.5 in models 1 and 2, respectively; see Supplementary Tables S4
321and S5). The 20 strongest associations in the meta-analyses of
322models 1 and 2 are shown in Table 3.

Table 1. Characteristics of the MCCS participants included in the analyses.Q6

Training set (1990–1994) Testing set (2003–2007)

Participant characteristics
UCC cases
(N ¼ 270)

Controls
(N ¼ 270)

UCC cases
(N ¼ 134)

Controls
(N ¼ 134)

Age at blood draw, median [IQR] 63 [58–67] 64 [58–67] 72 [67–77] 72 [67–77]
Sex

Male, N (%) 207 (77%) 207 (77%) 101 (75%) 101 (75%)
Female, N (%) 63 (23%) 63 (23%) 33 (25%) 33 (25%)

Country of birth
Australia/NZ/UK/other, N (%) 168 (62%) 166 (61%) 104 (78%) 104 (78%)
Italy, N (%) 56 (21%) 58 (21%) 20 (15%) 20 (15%)
Greece, N (%) 46 (17%) 46 (17%) 10 (7%) 10 (7%)

Blood sample type
Dried blood spots, N (%) 170 (63%) 170 (63%) 1 (1%) 1 (1%)
Peripheral blood mononuclear cells, N (%) 93 (34%) 93 (34%) 0 (0%) 0 (0%)
Buffy coats, N (%) 7 (3%) 7 (3%) 133 (99%) 133 (99%)

Smoking
Current, N (%) 51 (19%) 41 (15%) 22 (16%) 13 (10%)
Former, N (%) 146 (54%) 111 (41%) 68 (51%) 63 (47%)
Never, N (%) 73 (27%) 118 (44%) 44 (33%) 58 (43%)

Smoking pack-years, median [IQR] 18 [0–40.7] 4.2 [0–29.6] 11.4 [0–35.1] 5.2 [0–19.8]
Height (cm), median [IQR] 168 [162–173] 168 [163–173] 169 [162–176] 170 [164–175]
Body mass index (kg/m2), median [IQR] 27.5 [25.4–29.8] 27.1 [24.8–29.5] 27.3 [24.7–29.8] 27.2 [24.5–29.5]
Alcohol (ethanol) consumption (g/day), median [IQR] 4.5 [0–20.5] 6.8 [0–17.7] 9.2 [1.3–23.6] 8.7 [0.6–23.4]
Diet quality: AHEI-2010, median [IQR] 63.0 [55.0–70.9] 64.5 [57.0–72.0] 64.5 [55.0–70.5] 63.0 [57.5–72.4]
Physical activity score, median [IQR] 2 [1.3–2] 2 [2–2] 2 [2–3] 2 [2–2.8]
Education score, median [IQR] 4 [3–5] 4 [3–6] 4 [4–7] 4 [4–8]
Socioeconomic status, SEIFA-10, median [IQR] 5 [3–8] 5 [3–8] 6 [4–9] 6 [3–9]

Note: Physical activity score is a categorized score based on time spent doing vigorous/less vigorous activities. Educational score is a pseudo-continuous score
ranging from 1 for “primary school only” to 8 for “tertiary or higher university degree.”
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325 The logistic Lasso regression of UCC risk on the 1,061 smoking-
326 based CpGs using the 270 MCCS baseline case–control pairs selected
327 ten CpGs (MS10): cg01324550 (LOC404266), cg02743070 (ZMIZ1),
328 cg07058086 (KIF13B), cg10399789 (GFI1), cg16622061 (chr16:
329 86888736), cg17924476 (AHRR), cg18979623 (ZBTB46), cg19089201
330 (MYO1G), cg23110422 (ETS2), and cg24139443 (chr17: 74131549;
331 Supplementary Table S6). The associations with risk of UCC for the
332 1,061 smoking-associated methylation sites on the training data are
333 shown in Supplementary Table S6. The derived methylation scores
334 based on associations at P < 0.05, P < 0.01, and P < 0.001 included 66
335 (MS66), 11 (MS11), and 2 (MS2) CpGs, respectively. The associations
336 of these four predictors with UCC risk in the MCCS testing data set
337 (N¼ 134 cases,model 3) are presented inTable 4.MS10 andMS11 had
338 five overlapping CpGs (cg07058086, cg10399789, cg17924476,
339 cg19089201, and cg23110422) and were associated with risk of UCC
340 in the testing data set (OR¼ 1.37; 95% CI, 1.00–1.90) and (OR¼ 1.42;
341 95%CI, 1.01–1.99), respectively. The distribution ofMS10 by smoking
342 status is presented in Supplementary Fig. S2, showing it was elevated in
343 current compared with never smokers. The association of MS10 with
344 UCC risk in the WHI data (model 2) was weaker (OR¼ 1.09; 95% CI,
345 0.91–1.30).
346 Using all 404 case–control pairs of MCCS as the training set, as a
347 sensitivity analysis, the logistic Lasso models selected 18 CpGs
348 (MS18) from the 1,061 smoking-associated CpGs (Supplementary
349 Table S7). MS18 and MS10 had eight overlapping CpGs (cg02743070,
350 cg07058086, cg10399789, cg16622061, cg17924476, cg19089201,
351 cg23110422, and cg24139443). We assessed the resulting predictor

353MS18 by examining its associationwithUCC risk in theWHIdata, and
354the result was very similar as for MS10 (OR ¼ 1.09; 95% CI, 0.92–
3551.30; Table 4). The fixed-effects meta-analysis for MS10 of the two
356replication sets in MCCS (N ¼ 134) and WHI (N ¼ 440) gave an
357estimated OR of 1.15; 95% CI, 0.98–1.34, P ¼ 0.08.
358The ability of the methylation scores to predict risk of UCC with
359different models on the testing data sets is presented in Table 5. For
360the MCCS testing set, the predictions by model CþMS10 and model
361C þ MS11 achieved the highest AUC estimate of 0.66, which was
362only slightly greater than the same model without methylation infor-
363mation (AUC ¼ 0.64, P ¼ 0.43 for MS10 and 0.39 for MS11). For the
364WHI testing set, the prediction by model B þ MS10 or MS18
365achieved an AUC estimate of 0.68, which was of the same as model
366B alone (P ¼ 0.11 or 0.22).

367Discussion
368Most previous studies that investigated the association of smoking
369with development of urothelial cancer used self-reported smoking
370history. We included two self-reported variables, smoking status and
371pack-years, in our analyses. There are other aspects of smoking history,
372such as age at starting or passive smoking that are typically not or
373inaccurately captured by questionnaires. As DNA methylation in
374blood can capture lifetime exposure or different individual responses
375to smoking, we evaluated the association between smoking-associated
376methylation and risk of UCC. Although potential associations with
377UCC were identified at 206 (�19%) and 93 (�9%) smoking-based

Table 4. OR (per 1 SD increase), 95% CI, and P value for the association between methylation-based predictors and risk of UCC.

Replication data sets
MCCS (N ¼ 134 pairs) WHI (N ¼ 440 pairs)

Predictor OR (95% CI) P OR (95% CI) P

MS10 1.37 (1.00–1.90) 0.05 1.09 (0.91–1.30) 0.37
MS66 1.35 (0.95–1.91) 0.09
MS11 1.42 (1.01–1.99) 0.04
MS2 1.05 (0.78–1.40) 0.76
MS18 1.09 (0.92–1.30) 0.33

Note: The predictor was built byweighted average onmethylation at selected CpGs: MS¼ b1CpG1þ b2CpG2þ . . .þ bnCpGn, where CpGi is M-value at this CpG site, bi
use Lasso coefficients (for MS10, MS18) or log of OR from univariate analyses (for MS66, MS11, and MS2). The association was estimated by conditional logistic
regression model 3 for MCCS data and model 2 for WHI data, respectively.

Table 5. AUC estimates and comparisons for predictions of UCC risk on the testing data sets using several models.

MCCS (N ¼ 134 pairs) WHI (N ¼ 440 pairs)
AUC P AUC P

Model A 0.61 0.18 (vs. model C) Model A 0.58 0.0002 (vs. model B)
Model B 0.63 0.52 (vs. model C) Model B 0.68
Model C 0.64
Model A þ MS10 0.63 0.27 (vs. model A) Model A þ MS10 0.61 0.05 (vs. model A)
Model A þ MS11 0.64 0.19 (vs. model A) Model A þ MS18 0.61 0.07 (vs. model A)
Model B þ MS10 0.65 0.36 (vs. model B) Model B þ MS10 0.68 0.11 (vs. model B)
Model B þ MS11 0.65 0.30 (vs. model B) Model B þ MS18 0.68 0.22 (vs. model B)
Model C þ MS10 0.66 0.44 (vs. model C)
Model C þ MS11 0.66 0.45 (vs. model C)

Note: TheAUCwas estimated based on unconditional logistic regressionmodels.Model A usedwhite blood cell composition as independent variables (forWHI, race/
ethnicity was also used). Model B used white blood cell composition, smoking status, and pack-years as independent variables (for WHI, race/ethnicity was also
used). Model C used white blood cell composition, smoking status, pack-years, and other covariates (age, sex, country of birth, sample type, alcohol, BMI, height,
educational level, physical activity, socioeconomic status, and diet quality) as independent variables. MS10, MS11, and MS18 were additional independent variables.
P value was obtained by the DeLong test versus other models.
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380 CpG sites in the MCCS in models without and with adjustment for
381 self-reported smoking, respectively, and most associations were in
382 the expected direction, these associations were overall quite weak.
383 In the meta-analysis, DNA methylation at genes, including AHRR,
384 GPR15, F2RL3, PRSS23, and GFI1 (major smoking-related genes),
385 was strongly (P < 10–7) associated with UCC risk; however, the
386 associations were substantially attenuated after adjusting for self-
387 reported smoking history, likely because these self-reported vari-
388 ables might have captured almost full information of smoking
389 exposure. Thus, these methylation markers added relatively little
390 to the prediction of urothelial cancer risk beyond their association
391 with self-reported smoking. A methylation score combining mea-
392 sures at ten smoking-associated CpG sites developed in the MCCS
393 cohort showed some evidence of association with risk of UCC (OR
394 per SD � 1.4) independently of self-reported smoking in an
395 independent data set of MCCS participants (Table 4). Although
396 these results suggest that the combination of smoking methylation
397 markers may improve the prediction of urothelial cancer risk,
398 limited evidence of replication was found in the WHI cohort (OR
399 per SD � 1.1).
400 The previous study by Jordahl and colleagues (24) using WHI data
401 investigated three specific smoking-related probes (cg05575921 in the
402 gene AHRR, cg03636183 in F2RL3, and cg19859270 in GPR15) in
403 relation to risk of UCC and showed that methylation alterations at
404 cg05575921 and cg19859270 might mediate the effects of smoking on
405 UCC. OurMCCS data also detected nominally significant associations
406 with UCC risk at these CpGs (cg05575921: OR ¼ 0.78; 95% CI, 0.63–
407 0.97; P ¼ 0.02 and cg19859270: OR ¼ 0.81; 95% CI, 0.68–0.97; P ¼
408 0.02) in the adjusted model, which indicate they may add information
409 about risk, in addition to the potential mediation of effect.
410 DNA methylation at AHRR cg05575921 was previously reported
411 to be strongly associated with lung cancer risk (19, 34–36), e.g., OR
412 ¼ 0.50 (95% CI, 0.43–0.59), P ¼ 4.3 � 10–17 in a pooled analysis of
413 five case–control studies (19). Six CpGs in the AHRR gene also
414 showed nominally significant association (P < 0.05) with risk of
415 UCC in our meta-analysis (model 2): cg05575921 (OR ¼ 0.76, P ¼
416 0.003), cg17924476 (OR ¼ 1.19, P ¼ 0.003), cg26529655 (OR ¼
417 0.77, P¼ 0.01), cg12806681 (OR¼ 0.86, P¼ 0.02), cg01899089 (OR
418 ¼ 0.88, P ¼ 0.03), and cg03991871 (OR ¼ 0.88, P ¼ 0.04; see
419 Supplementary Table S5). Moreover, cg03636183 in the F2RL3
420 gene, cg21566642 and cg05951221 in 2q37.1, and cg06126421 in
421 6p21.33 were also reported to be strongly associated (P ¼ 2� 10–15)
422 with lung cancer risk (19). Among them, three CpGs also
423 showed nominally significant association with UCC risk in our
424 meta-analyses (model 2): cg21566642 (OR ¼ 0.82, P ¼ 0.009),
425 cg05951221 (OR ¼ 0.86, P ¼ 0.04), and cg06126421 (OR ¼ 0.85, P
426 ¼ 0.03; see Supplementary Table S5). These associations appeared
427 to be weaker than in the lung cancer studies, likely because smoking
428 is not as strong a risk factor for urothelial cancer as it is for lung
429 cancer. In a recent study (37), we showed that GrimAge, a composite
430 biomarker based on several DNAmethylation surrogates for plasma
431 proteins and a methylation-based estimator of smoking pack-
432 years (38), is substantially more strongly associated with lung
433 cancer risk (OR per SD ¼ 2.03; 95% CI, 1.56–2.64) than with risk
434 of UCC (OR ¼ 1.22; 95% CI, 0.98–1.52).
435 The samples used in the WHI cohort were all postmenopausal
436 women, and smoking accounts for approximately half of bladder
437 cancer incidence among postmenopausal women (4, 23). Sex is
438 associated with distinct DNA methylation patterns (39). However,
439 we did not find that associations of DNA methylation smoking
440 markers with UCC varied by sex in the MCCS data, nor did we find

442heterogeneity between MCCS and WHI results. In this study, we
443used two common methods to develop risk predictors: (i) Lasso and
444(ii) univariate analysis with weighted average based on individual
445CpG associations with UCC risk. For the latter, it is difficult to
446decide on an appropriate P-value cutoff, and our results showed that
447the Lasso performed well in this setting. Although there was a
448reasonably large association of the Lasso predictor in the testing set
449(OR per 1 SD � 1.4), this translated into only moderately improved
450risk prediction (Table 5).
451DNA methylation changes strongly with age (40, 41). In a recent
452study using methylation case–control studies nested in the MCCS,
453we have identified and replicated 32,659 age-associated CpGs (42).
454Among the 1,061 smoking-associated CpGs considered in the
455current study, methylation at 475 (45%), 328 (31%), and 118
456(11%) CpGs was found to be associated with age in never, former,
457and current smokers, respectively (P < 0.05/1,061 ¼ 4.7 � 10–5,
458based on the data set used in (42), results not shown). Specifically,
459cg01324550, cg16622061, and cg24139443, which were included in
460MS10, showed significant associations with age in the overall
461sample and in never smokers, but not other CpGs (42). This implies
462that aging (or other cancer risk factors; refs. 43 and 44) may affect
463DNA methylation at the same loci, which may contribute to explain
464why these methylation marks add information about cancer risk, in
465addition to unmeasured smoking exposure.
466There are several limitations in this study. First, even with pre-
467diagnostic blood samples, we cannot rule out the possibility that DNA
468methylation measures in blood reflected early cancer or development
469of other smoking-associated diseases. Second, the participants includ-
470ed in theMCCS testing set were an average eight years older than in the
471training set. We noted that model 1, which included only white blood
472cell composition variables, achieved anAUCof 0.53 for the training set
473but an AUC of 0.61 for the replication set (older MCCS partici-
474pants). It may be that age, a strong cancer risk factor, is associated
475with changes in white blood cell composition over time (45) that are
476also associated with cancer risk (46, 47). Third, we considered the
477two MCCS data sets as independent because there was no partic-
478ipant overlap, and participants with follow-up blood samples were
479substantially older; however, the samples were drawn from the same
480cohort and might have a shared environment; thus, the two data sets
481might not be completely independent, which may have an influence
482on results of validation and risk prediction. Fourth, the modest
483improvement of AUC may suggest that other factors, such as
484germline genetic variation, and incorporation of more environ-
485mental exposures, should be considered in the predictive models.
486Fifth, the biological mechanisms underlying our findings were not
487assessed because the aim of our study was to improve UCC risk
488prediction using smoking-associated methylation marks. For exam-
489ple, TET proteins may stimulate and regulate DNA methylation at
490genes that were included (48), but this requires further investigation
491using functional studies. Finally, compared with the MCCS cohort,
492the methylation measures in WHI were produced using different
493methods of sample collection and storage, DNA extraction, and
494DNA methylation processing, which may have influenced some
495findings, e.g., high heterogeneity for some CpGs across the two
496studies when performing meta-analysis.
497In conclusion, our findings suggest that blood-based DNA meth-
498ylationmarkers for smokingmay be associated, albeit weakly, with risk
499of UCC independent of self-reported smoking history, and could
500provide some improvement to the prediction of urothelial cancer risk.
501The overall utility of our findings needs to be further assessed using
502additional external data sets.
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